FPGA虚拟双口RAM

给一段波形加发送时延,可以将其存储到BRAM IP核中,读地址比写地址晚响应的延迟采样点数(BRAM深度足够,即大于延迟采样点数),就达到了延迟的效果。对于常有效的信号波形来说这么做是可以的。但是对于只有在某几个时刻有效的信号来说,仍采用这种办法缓存,BRAM中存储的大多数数据是无效的,浪费了很多BRAM资源。

本文采用的办法是“虚拟”的RAM,读地址与写地址的关系不变,虚拟的写地址始终累加,虚拟的读地址延迟相应的采样点数。但是数据不写入RAM中,而是在数据有效时写入一个寄存器,并且标记对应的虚拟写地址为真实的读地址,当虚拟的读地址为真实读地址时从寄存器中读出数据。(testbench见附录)

如下图所示,数据data只有当valid拉高时有效,于是按照上述逻辑对datavalid信号延迟,当...dout_valid拉高时表示数据延迟了\(100\)个采样点。


特别感谢罗老师的耐心细致的讲解!

附录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
`timescale 1ns / 1ps


module testbench();
reg clk = 1'b1;
reg rst = 1'b1;
reg rst_n = 1'b0;

localparam CLOCK_PERIOD = 8.138;
always #(CLOCK_PERIOD/2) clk = ~clk; // 122.88MHz

initial begin
#8.138;
rst <= 1'b0;
rst_n <= 1'b1;
end

////////////////////////////////////////////////////////////////////////////////
reg [11:0] data;
reg valid;

reg [5:0] cnter;
always @(posedge clk) begin
if (rst) begin
cnter <= 6'd0;
end else begin
cnter <= cnter + 6'd1;
end
end

// Suppose the data signal remains unchanged each time
// the valid signal is raised
always @(posedge clk) begin
if (rst) begin
valid <= 1'b0;
end else begin
if (cnter == 6'd46) begin
valid <= 1'b1;
end else begin
valid <= 1'b0;
end
end
end

reg [11:0] data_buf;
always @(posedge clk) begin
if (rst) begin
data_buf <= 12'd0;
data <= 12'd0;
end else begin
if (cnter == 6'd47) begin
data_buf <= data;
data <= 12'd0;
end else if (cnter == 6'd63) begin
data_buf <= data_buf;
data <= data_buf + 12'd1;
end
end
end

reg [7:0] delay = 8'd100;
////////////////////////////////////////////////////////////////////////////////
wire virtual_dual_ram_din_valid;
reg virtual_dual_ram_dout_valid;
assign virtual_dual_ram_din_valid = valid;

wire [11:0] virtual_dual_ram_din;
reg [11:0] virtual_dual_ram_dout;
assign virtual_dual_ram_din = data;

reg [7:0] virtual_dual_ram_waddr;
wire [7:0] virtual_dual_ram_raddr;
always @(posedge clk) begin
if (rst) begin
virtual_dual_ram_waddr <= 18'd0;
end else begin
virtual_dual_ram_waddr <= virtual_dual_ram_waddr + 18'd1;
end
end

addsub0808 addsub0808_inst (
.ADD ( 1'b0 ), // 1 - add, 0 - sub
.A ( virtual_dual_ram_waddr ), // input [7:0] A
.B ( delay ), // input [7:0] B
.S ( virtual_dual_ram_raddr ) // output [7:0] S
);


// Virtual Dual RAM(Depth = 4)
reg [11:0] virtual_dual_ram_00 = 12'd0;
reg [11:0] virtual_dual_ram_01 = 12'd0;
reg [11:0] virtual_dual_ram_02 = 12'd0;
reg [11:0] virtual_dual_ram_03 = 12'd0;

reg [7:0] delay_raddr_real_00 = 8'd0;
reg [7:0] delay_raddr_real_01 = 8'd0;
reg [7:0] delay_raddr_real_02 = 8'd0;
reg [7:0] delay_raddr_real_03 = 8'd0;


reg [1:0] delay_wr_state = 2'd0;
reg [1:0] delay_wr_next_state = 2'd0;

// 1. update state
always @(posedge clk) begin
if (rst) begin
delay_wr_state <= 2'd0;
end else begin
delay_wr_state <= delay_wr_next_state;
end
end

// 2. update next_state
reg virtual_dual_ram_din_valid_d1;
always @(posedge clk) begin
if (rst) begin
virtual_dual_ram_din_valid_d1 <= 1'b0;
end else begin
virtual_dual_ram_din_valid_d1 <= virtual_dual_ram_din_valid;
end
end

always @(*) begin
case (delay_wr_state)
2'd0: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
delay_wr_next_state = 2'd1;
end else begin
delay_wr_next_state = 2'd0;
end
end
2'd1: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
delay_wr_next_state = 2'd2;
end else begin
delay_wr_next_state = 2'd1;
end
end
2'd2: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
delay_wr_next_state = 2'd3;
end else begin
delay_wr_next_state = 2'd2;
end
end
2'd3: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
delay_wr_next_state = 2'd0;
end else begin
delay_wr_next_state = 2'd3;
end
end
endcase
end

// 3. Write virtual dual RAM
always @(posedge clk) begin
case (delay_wr_state)
2'd0: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
virtual_dual_ram_00 <= virtual_dual_ram_din[11:0];
delay_raddr_real_00 <= virtual_dual_ram_waddr;
end else begin
virtual_dual_ram_00 <= virtual_dual_ram_00;
delay_raddr_real_00 <= delay_raddr_real_00;
end
end
2'd1: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
virtual_dual_ram_01 <= virtual_dual_ram_din[11:0];
delay_raddr_real_01 <= virtual_dual_ram_waddr;
end else begin
virtual_dual_ram_01 <= virtual_dual_ram_01;
delay_raddr_real_01 <= delay_raddr_real_01;
end
end
2'd2: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
virtual_dual_ram_02 <= virtual_dual_ram_din[11:0];
delay_raddr_real_02 <= virtual_dual_ram_waddr;
end else begin
virtual_dual_ram_02 <= virtual_dual_ram_02;
delay_raddr_real_02 <= delay_raddr_real_02;
end
end
2'd3: begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
virtual_dual_ram_03 <= virtual_dual_ram_din[11:0];
delay_raddr_real_03 <= virtual_dual_ram_waddr;
end else begin
virtual_dual_ram_03 <= virtual_dual_ram_03;
delay_raddr_real_03 <= delay_raddr_real_03;
end
end
endcase
end

// 3. Write virtual dual RAM
reg [3:0] virtual_dual_bram_data_flag = 4'b0000;
always @(posedge clk) begin
if (virtual_dual_ram_din_valid & ~virtual_dual_ram_din_valid_d1) begin
case (delay_wr_state)
2'd0: begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag | 4'b0001;
end
2'd1: begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag | 4'b0010;
end
2'd2: begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag | 4'b0100;
end
2'd3: begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag | 4'b1000;
end
endcase
end else begin
if (virtual_dual_ram_raddr == delay_raddr_real_00 && virtual_dual_bram_data_flag[0]) begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag & 4'b1110;
end else if (virtual_dual_ram_raddr == delay_raddr_real_01 && virtual_dual_bram_data_flag[1]) begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag & 4'b1101;
end else if (virtual_dual_ram_raddr == delay_raddr_real_02 && virtual_dual_bram_data_flag[2]) begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag & 4'b1011;
end else if (virtual_dual_ram_raddr == delay_raddr_real_03 && virtual_dual_bram_data_flag[3]) begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag & 4'b0111;
end else begin
virtual_dual_bram_data_flag <= virtual_dual_bram_data_flag & 4'b1111;
end
end
end

// 3. Read virtual dual RAM
always @(posedge clk) begin
if (rst) begin
virtual_dual_ram_dout <= 12'd0;
virtual_dual_ram_dout_valid <= 1'b0;
end else if (virtual_dual_ram_raddr + 8'd1 == delay_raddr_real_00 && virtual_dual_bram_data_flag[0]) begin
virtual_dual_ram_dout <= virtual_dual_ram_00;
virtual_dual_ram_dout_valid <= 1'b1;
end else if (virtual_dual_ram_raddr + 8'd1 == delay_raddr_real_01 && virtual_dual_bram_data_flag[1]) begin
virtual_dual_ram_dout <= virtual_dual_ram_01;
virtual_dual_ram_dout_valid <= 1'b1;
end else if (virtual_dual_ram_raddr + 8'd1 == delay_raddr_real_02 && virtual_dual_bram_data_flag[2]) begin
virtual_dual_ram_dout <= virtual_dual_ram_02;
virtual_dual_ram_dout_valid <= 1'b1;
end else if (virtual_dual_ram_raddr + 8'd1 == delay_raddr_real_03 && virtual_dual_bram_data_flag[3]) begin
virtual_dual_ram_dout <= virtual_dual_ram_03;
virtual_dual_ram_dout_valid <= 1'b1;
end else begin
virtual_dual_ram_dout <= virtual_dual_ram_dout;
virtual_dual_ram_dout_valid <= 1'b0;
end
end


endmodule